C.U.SHAH UNIVERSITY Summer Examination-2016

Subject Name : Transform Theory

	Subject	Code : 4SC05TTE1	Branch: B.Sc. (Mathematic	cs)
	Semeste	r:5 Date: 02/05/2016	Time : 02:30 To 05:30	Marks: 70
	 Instructions: (1) Use of Programmable calculator & any other electronic instrument is prohibi (2) Instructions written on main answer book are strictly to be obeyed. (3) Draw neat diagrams and figures (if necessary) at right places. (4) Assume suitable data if needed. 			
Q-1	a) b)	Attempt the following questions: Define: periodic function. What is the Evaluate: $\mathcal{L}[3^t]$	the fundamental period of cosnx?	(14) (02) (02)
	c) d) e)	Define: Fourier transform. Define: Z -transform. Check whether the function $f(x) =$	$\sin x^2$ is even or odd function?	(02) (02) (02) (02)
	f)	Evaluate: $\mathcal{L}^{-1}\left[\frac{1}{s(s-1)}\right]$.		(02)
Atte	g) mpt any :	State convolution theorem four questions from Q-2 to Q-8		(02)
Q-2	a)	Attempt all questions Find the Fourier series of the function $f(x) = \begin{cases} 0, & -2 < x < -1 \\ k, & -1 < x < 1 \end{cases}$	on	(14) (07)
	b)	$\int_{0}^{0} 1 < x < 2.$ If $f(t)$ has the Laplace transform F $F(s-a)$. Hence evaluate $L[e^{-t}(3)]$	$f(s)$, then show that $e^{at}f(t)$ has the $\cos 20t - 7 \sin 20t$].	e transform (07)
Q-3	a)	Attempt all questions Show that $\int_{0}^{\infty} \frac{\cos xw + w \sin xw}{1 + w^2} dx = \begin{cases} 0, \\ \frac{\pi}{2}, \\ \frac{\pi}{2}, \\ \frac{\pi}{2}, \end{cases}$	$\begin{array}{l} x < 0 \\ x = 0 \end{array}$	(14) (07)
	b)	Using Laplace transform solve y'' -	y, x > 0. + $4y' + 5y = 50t, y(0) = 5, y'(0)$) = -5. (07)

Page 1 || 2

Q-4 Attempt all questions

a) Obtain the half range Fourier cosine series of

$$f(x) = \begin{cases} \frac{2k}{L}x, & 0 < x < \frac{L}{2} \\ \frac{2k}{L}(L-x), \frac{L}{2} < x < L. \end{cases}$$
b) If $Z(u_n) = U(z)$, then prove that $\lim_{n \to \infty} (u_n) = \lim_{z \to 1} (z-1)U(z).$ (07)

b)

Attempt all questions (14)

a) Find the Fourier sine transform of
$$e^{-|x|}$$
. Hence show that

$$\int_{0}^{\infty} \frac{x \sin mx}{1 + x^2} dx = \frac{\pi e^{-m}}{2}, m > 0.$$

Evaluate $\mathcal{L}^{-1} \left[\frac{s}{(s^2 + 1)(s^2 + 4)(s^2 + 9)} \right].$ (07)

Q-6 Attempt all questions (14) (07) (07) $\int_{0}^{\infty} \frac{1-\cos(\pi\lambda)}{\lambda} \sin(x\lambda) d\lambda.$

b) Find the Z -transform of (i) $n \sin n\theta$ (ii) $n^2 e^{n\theta}$. (07)

Q-7 Attempt all questions (14)
(14)
$$2^{2z^2+5z+14}$$
 (07)

- a) If $U(z) = \frac{2z^2 + 5z + 14}{(z-1)^4}$, evaluate u_2 and u_3 . (07)
- b) Obtain Fourier series for the function f(x) given by (07)

$$f(x) = \begin{cases} 1 + \frac{2x}{\pi}, -\pi \le x \le 0, \\ 1 - \frac{2x}{\pi}, & 0 \le x \le \pi. \end{cases}$$

Deduce that $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{\pi^2}{8}$.

Q-8

Attempt all questions

- a) Find the inverse Laplace transform of (i) $\log \frac{s^2+1}{s(s+1)}$ (ii) $\cot^{-1}\left(\frac{s}{2}\right)$. (07)
- b) Find the Fourier transform of $f(x) = \begin{cases} 1, |x| < 1 \\ 0, |x| > 1 \end{cases}$ Evaluate $\int_0^\infty \frac{\sin x}{x} dx$.

Page 2 || 2

(14) (07)

(07)

(14)

(07)